From Carbon Capture to Carbon-Negative Construction: The Journey to

About Me & My Journey with SCCS

Final-year PhD student specializing in **bio-cementation** using plant-based enzymes (EICP) and bacteria (MICP).

Three years of involvement with SCCS events, developing meaningful academic and industry connections.

Collaborating with **The Carbon Removers** to evaluate solutions for permanent storage of biogenic CO₂.

Passionate about translating **academic research** into **real-world solutions** to tackle climate change.

First 4D XCT Imaging of Enzyme-Induced Carbonate Precipitation

- High-speed X-ray computed tomography (XCT) visualized **multiphase** enzymeinduced carbonate precipitation (EICP).
- First-ever capture of real-time enzyme induced crystallization in 3D.
- Critical for advancing subsurface CO₂ storage and other applications.

Before During

How Crystallization Impacts Permeability and Flow

- **1. Crystallization Dynamics:**
- Precipitation occurs along the mixing profile.
- Reduction in local flow velocity caused by crystal formation.
- **2. Impact on Permeability:**
- Simulated permeability reduced by 37% in just 1 hour.
- **3. Key Insight:**
- Crystal location is independent of sand grain contact points.

Fluid Mixing Model to Explain Crystallization Dynamics

OpenFOAM was used to simulate the in situ mixing of fluids.

Fluid Mixing Model to Explain Crystallization Dynamics

• During flow viscosity and density differences limit effective mixing.

- Density currents drive crystal formation along gradients once flow turned off.
- **Fluid mixing in porous media remains a significant challenge!**

The Case for Single-Phase Injection Strategies

Traditional multi-phase injection faces challenges: **clogging, uneven distribution, and inefficiency.**

Single-phase injection combines crudely extracted **urease** (from jack beans or soya beans), **urea, and calcium chloride,** simplifying delivery and reducing operational costs.

Schematic of single-phase injection setup, combining enzyme and cementing solution in one phase.

Falling head tests demonstrate gradual reduction in permeability across cycles while maintaining flow paths.

Retaining Permeability with Soybean EICP

- Requires several cycles for significant permeability reduction.
- Hydraulic conductivity retained up to **25 cycles.**
- Applications in **sustainable drainage systems** and **fluid flow management.**

• Soya bean EICP increases thermal conductivity by **779%** after 25 cycles.

Thermal Energy Storage with Paraffin-Infused Expanded Graphite

- Paraffin-infused EICP samples absorb latent heat during heating, slowing the temperature rise compared to non-paraffin-infused samples.
- Thermal buffering occurs within the phase change window (~40–50°C), significantly enhancing energy storage potential.

Thermal Energy Storage with Paraffin-Infused Expanded Graphite

• Paraffin-infused EICP samples release stored latent heat gradually, cooling significantly slower under ambient conditions

Tracking Carbonate Precipitation Over Time with Micro XCT

• **Uniform precipitation** of CaCO₃ over repeated soya bean EICP cycles.

- Precipitation predominantly forms at grain contacts, acting as **thermal** and **mechanical** bridges.
- **Retention of flow paths** enables continued bio-cementation, even after multiple cycles.

Compressive Strength Tests

3 cycles: 2.3 MPa at 7.5 wt% CaCO₃

6 cycles: 5.2 MPa at 12.7 wt% $CaCO₃$

9 cycles: **>8.8 MPa** at 16.2 wt% CaCO₃

Compressor maxed at 25,000N, failed to break sample!

Soya Bean EICP for Hydraulic, Thermal, and Mechanical Optimization

Hydraulic conductivity is maintained up to 25 cycles of soybean EICP, enabling **greater biocementation than MICP**.

UCS reached **17.9 MPa at 26.6 wt% CaCO₃** after 25 cycles of soybean EICP

The Construction Sector: A Major Source of Global CO₂ **Emissions**

Cement and concrete are responsible for 8% of global CO₂ emissions — nearly twice that of aviation.

Current materials rely on **energy-intensive processes and fossil fuel-based resources**, driving high emissions.

There is an urgent need for sustainable alternatives to conventional concrete.

Cement free bioconcrete, Permanent CO₂ **storage**

Our **patent-pending process** combines carbon capture and biocementation, creating a closed-loop system where:

- CO₂ is stored in a **permanent, fully quantifiable,** and **mineralized form** within construction materials.
- The bio-cementation step **regenerates aqueous CO₂ sorbent** for **partnering capture companies**.
- **Utilizes CO₂** in high-value products, making permanent storage **economically viable**.

Impact

Replacing all UK concrete with Ureaka bioconcrete could avoid 14.8 Mt CO₂ and sequester 6.7 Mt of CO₂.

This is equivalent to removing over 5 million petrol cars for 1 year.

CO² Comparison 36 million m^3 _a 7.3 billion m_h^3 $1^{m³}$ 1 million m^3 100 million m³ 1Gt emitted 1Mt CO₂ 1000 tons CO₂ eq -1 sequestered -1000 $-1Mt$ \sim CO. :oncrete Ureaka Bioconcrete -1 Gt a UK annual concrete use b b Global annual concrete use

Note: This comparison illustrates potential CO2 reduction if we reach target efficiencies in each step of our process

Material Properties

Structural: Up to 30% lighter than conventional concrete, with comparable compressive strength (3500 psi).

Measured CO₂ storage: \sim 117 kg of CO₂ per ton of bioconcrete, confirmed by acid dissolution and XCT.

Cost competitive: Priced to match or beat traditional concrete costs.

Tailored permeability: Allows use in drainage, coastal infrastructure, and masonry.

Ureaka's Closed-Loop Carbon Capture & Storage: A Circular Solution

Patent Pending: UK Patent Application No. 2411063.7

1a. Carbon Negative Bio-concrete Production

• Leverages the **urea hydrolysis** pathway for **controlled carbonate precipitation**.

 $(NH_2)_2CO + CaCl_2 + 2H_2O \rightarrow CaCO_3 + 2NH_4Cl$

- Produces **CaCO**₃ that binds aggregates into **high-strength bio-concrete.**
- Enables **permanent**, and **fully quantifiable** CO₂ sequestration.
- Uses sustainable urease sources, primarily **soybean waste**.
- Efficient ammonium chloride recovery supports **scalable**, **circular carbon capture.**

High strength bio-concrete (3500 psi) Patent Pending: UK Patent Application No. 2411063.7

Cumulative CaCO^₃ *accumulation over multiple cycles*

1b. Recovering Ammonia Efficiently

haring no[.] permitted

Patent Pending: UK Patent Application No. 2411063.7

2. Recycled CO₂ **Sorbent: Innovative Electrochemistry**

Adapted from: Xie, H., Wang, F., Wang, Y., Liu, T., Wu, Y. & Liang, B. (2018). CO2 mineralization of natural wollastonite into porous silica a nd CaCO3 powders promoted via membrane electrolysis. Environmental Earth Sciences, 77.

Patent Pending: UK Patent Application No. 2411063.7

permitted

3. CO₂ **Capture & Urea Resynthesis (Partner Company)**

3. NH₃**.H**₂**O** is used as a sorbent to **Capture CO**₂ and resynthesise **Urea (4)** via the well established **Chilled Ammonia Process (CAP).**

Adapted from web: https://www.slideshare.net/slideshow/ccs-projects-integration-workshop-london-3nov11-aep-integration-of-acommercial-scale-co2-capture-facility-into-a-host-plant/10314387#5

Patent Pending: UK Patent Application No. 2411063.7

Sources of Alkalinity: Recovering CaCl₂

Long-Term Strategy: Use HCI from step 2 to extract Ca²⁺ from calcium silicaterich rocks (e.g., basalt, wollastonite) to **resynthesize CaCl**₂ for step 1.

$$
Casio3 + 2HCl \rightarrow CaCl2 + H2O + SiO2
$$

Abundant Resources: These materials are globally available, enabling **scalable applications** in sustainable construction and mineralization.

Initial Approach: Ureaka will purchase CaCl₂ as a **zero-carbon waste stream**.

Patent Pending: UK Patent Application No. 2411063.7

Supply Chain

Market Opportunity

The green construction material market is expected to grow at 12% CAGR from 2024 to 2029

Source/calculation: Green market assumed at 19% of global construction market of which we use numbers only for bricks and pre-cast concrete blocks (statistics from <https://market.us/report/construction-materials-market/> and [https://www.statista.com/outlook/cmo/diy-hardware-store/hardware-building](https://www.statista.com/outlook/cmo/diy-hardware-store/hardware-building-materials/worldwide)[materials/worldwide\)](https://www.statista.com/outlook/cmo/diy-hardware-store/hardware-building-materials/worldwide)

TAM \$325B

Global green construction materials market

SAM \$69B

UK + Europe + US

SOM \$70M

Estimated obtainable market with a 5% UK market share

This is how UREAKA distinguishes itself

Next Steps (12 months)

Regulatory approval:

Securing regulatory approvals under British Standards, BBA, BREEAM, and Puro Earth.

Market Validation:

Secure customer demand and commitments for our carbonnegative materials.

Product Development:

Complete development + testing of our pilot product line, including masonry blocks, facing bricks and porous paving slabs.

Partnerships:

- **Formalize CO₂ supply and industry collaborators**
- **Academic partnerships**
- **Reuse of industrial hubs**
- **New Scottish jobs!**

Thank You! Any Questions?

University of

