From Carbon Capture to Carbon-Negative Construction: The Journey to





# About Me & My Journey with SCCS

Final-year PhD student specializing in **bio-cementation** using plant-based enzymes (EICP) and bacteria (MICP).

**Three years of involvement** with SCCS events, developing meaningful academic and industry connections.

Collaborating with **The Carbon Removers** to evaluate solutions for permanent storage of biogenic CO<sub>2</sub>.



Passionate about translating **academic research** into **real-world solutions** to tackle climate change.



# First 4D XCT Imaging of Enzyme-Induced Carbonate Precipitation

- High-speed X-ray computed tomography (XCT) visualized multiphase enzymeinduced carbonate precipitation (EICP).
- First-ever capture of real-time enzyme induced crystallization in 3D.
- Critical for advancing subsurface CO<sub>2</sub> storage and other applications.



Before

During

# How Crystallization Impacts Permeability and Flow

- **1. Crystallization Dynamics:**
- Precipitation occurs along the mixing profile.
- Reduction in local flow velocity caused by crystal formation.
- 2. Impact on Permeability:
- Simulated permeability reduced by 37% in just 1 hour.
- 3. Key Insight:
- Crystal location is independent of sand grain contact points.



# Fluid Mixing Model to Explain Crystallization Dynamics

OpenFOAM was used to simulate the in situ mixing of fluids.





# Fluid Mixing Model to Explain Crystallization Dynamics

• During flow viscosity and density differences limit effective mixing.

- Density currents drive crystal formation along gradients once flow turned off.
- Fluid mixing in porous media remains a significant challenge!



# **The Case for Single-Phase Injection Strategies**

Traditional multi-phase injection faces challenges: clogging, uneven distribution, and inefficiency.

Single-phase injection combines crudely extracted urease (from jack beans or soya beans), urea, and calcium chloride, simplifying delivery and reducing operational costs.



Schematic of single-phase injection setup, combining enzyme and cementing solution in one phase.



Falling head tests demonstrate gradual reduction in permeability across cycles while maintaining flow paths.

# Retaining Permeability with Soybean EICP

Requires several cycles for significant permeability reduction.

- Hydraulic conductivity retained up to **25 cycles.**
- Applications in sustainable drainage systems and fluid flow management.



# Boosting Thermal Conductivity in Bio-Cemented Materials

 Soya bean EICP increases thermal conductivity by 779% after 25 cycles.







#### Thermal Energy Storage with Paraffin-Infused Expanded Graphite

- Paraffin-infused EICP samples absorb latent heat during heating, slowing the temperature rise compared to non-paraffin-infused samples.
- Thermal buffering occurs within the phase change window (~40–50°C), significantly enhancing energy storage potential.





#### Thermal Energy Storage with Paraffin-Infused Expanded Graphite

 Paraffin-infused EICP samples release stored latent heat gradually, cooling significantly slower under ambient conditions





# Tracking Carbonate Precipitation Over Time with Micro XCT

• Uniform precipitation of CaCO<sub>3</sub> over repeated soya bean EICP cycles.

- Precipitation predominantly forms at grain contacts, acting as thermal and mechanical bridges.
- Retention of flow paths enables continued bio-cementation, even after multiple cycles.



### Compressive Strength Tests

3 cycles: 2.3 MPa at 7.5 wt% CaCO<sub>3</sub>

6 cycles: 5.2 MPa at 12.7 wt% CaCO<sub>3</sub>

9 cycles: **>8.8 MPa** at 16.2 wt% CaCO<sub>3</sub>

Compressor maxed at 25,000N, failed to break sample!



#### Soya Bean EICP for Hydraulic, Thermal, and Mechanical Optimization



Thermal conductivity increased by up to 779% (0.25 to **1.93 W/m** •K)





UCS reached **17.9 MPa at 26.6** wt% CaCO₃ after 25 cycles of soybean EICP



# The Construction Sector: A Major Source of Global CO<sub>2</sub> Emissions

**Cement and concrete are responsible for 8% of global CO<sub>2</sub> emissions** — nearly twice that of aviation.

Current materials rely on **energy-intensive processes and fossil fuel-based resources**, driving high emissions.

There is an urgent need for sustainable alternatives to conventional concrete.



# Cement free bioconcrete, Permanent CO<sub>2</sub> storage

Our **patent-pending process** combines carbon capture and biocementation, creating a closed-loop system where:

- CO<sub>2</sub> is stored in a permanent, fully quantifiable, and mineralized form within construction materials.
- The bio-cementation step regenerates aqueous CO<sub>2</sub>
   sorbent for partnering capture companies.
- Utilizes CO<sub>2</sub> in high-value products, making permanent storage economically viable.



# Impact

Replacing all UK concrete with Ureaka bioconcrete could avoid **14.8** Mt CO<sub>2</sub> and sequester **6.7** Mt of CO<sub>2</sub>.

# This is equivalent to removing over 5 million petrol cars for 1 year.

#### **CO<sub>2</sub> Comparison** 36 million m³<sub>a</sub> 7.3 billion m<sup>3</sup><sub>b</sub> 1m<sup>3</sup> 1million m<sup>3</sup> 100 million m<sup>3</sup> 1Gt emitted 1Mt C02 1000 tons CO2 eq -1 sequestered -1000 -1Mt $\sim$ 0 Concrete Ureaka Bioconcrete -1Gt a UK annual concrete use h Global annual concrete use

Note: This comparison illustrates potential CO2 reduction if we reach target efficiencies in each step of our process

# **Material Properties**

**Structural:** Up to 30% lighter than conventional concrete, with comparable compressive strength (3500 psi).

**Measured CO<sub>2</sub> storage:** ~117 kg of CO<sub>2</sub> per ton of bioconcrete, confirmed by acid dissolution and XCT.

**Cost competitive:** Priced to match or beat traditional concrete costs.

**Tailored permeability:** Allows use in drainage, coastal infrastructure, and masonry.



#### **Ureaka's Closed-Loop Carbon Capture & Storage: A Circular Solution**



#### **1a. Carbon Negative Bio-concrete Production**

• Leverages the **urea hydrolysis** pathway for **controlled carbonate precipitation**.

 $(NH_2)_2CO + CaCl_2 + 2H_2O \rightarrow CaCO_3 + 2NH_4Cl$ 

- Produces **CaCO**<sub>3</sub> that binds aggregates into **high-strength bio-concrete**.
- Enables **permanent**, and **fully quantifiable** CO<sub>2</sub> sequestration.
- Uses sustainable urease sources, primarily **soybean waste**.
- Efficient ammonium chloride recovery supports **scalable**, **circular carbon capture**.



*Cumulative CaCO<sub>3</sub> accumulation over multiple cycles* 



#### **1b. Recovering Ammonia Efficiently**



Sharing not permitted



#### 2. Recycled CO<sub>2</sub> Sorbent: Innovative Electrochemistry



permitted

Adapted from: Xie, H., Wang, F., Wang, Y., Liu, T., Wu, Y. & Liang, B. (2018). CO2 mineralization of natural wollastonite into porous silica and CaCO3 powders promoted via membrane electrolysis. Environmental Earth Sciences, 77.



#### 3. CO<sub>2</sub> Capture & Urea Resynthesis (Partner Company)



3. NH<sub>3</sub>.H<sub>2</sub>O is used as a sorbent to Capture CO<sub>2</sub> and resynthesise Urea (4) via the well established Chilled Ammonia Process (CAP).

Adapted from web: https://www.slideshare.net/slideshow/ccs-projects-integration-workshop-london-3nov11-aep-integration-of-a-commercial-scale-co2-capture-facility-into-a-host-plant/10314387#5



#### Sources of Alkalinity: Recovering CaCl<sub>2</sub>



**Long-Term Strategy:** Use HCl from step 2 to extract Ca<sup>2+</sup> from calcium silicaterich rocks (e.g., basalt, wollastonite) to **resynthesize CaCl<sub>2</sub>** for step 1.

$$CaSiO_3 + 2HCI \rightarrow CaCl_2 + H_2O + SiO_2$$

**Abundant Resources**: These materials are globally available, enabling **scalable applications** in sustainable construction and mineralization.

**Initial Approach:** Ureaka will purchase CaCl<sub>2</sub> as a **zero-carbon waste stream**.



# **Supply Chain**





# Market Opportunity

The green construction material market is expected to grow at 12% CAGR from 2024 to 2029

Source/calculation: Green market assumed at 19% of global construction market of which we use numbers only for bricks and pre-cast concrete blocks (statistics from <a href="https://market.us/report/construction-materials-market/">https://market.us/report/construction-materials-market/</a> and <a href="https://www.statista.com/outlook/cmo/diy-hardware-store/hardware-building-materials/worldwide">https://www.statista.com/outlook/cmo/diy-hardware-store/hardware-building-materials/worldwide</a>)

#### **TAM \$325B**

Global green construction materials market

#### SAM \$69B

UK + Europe + US

#### SOM \$70M

Estimated obtainable market with a 5% UK market share

# This is how UREAKA distinguishes itself

|                                           |        | <b>BI</b> <sup>C</sup> MASON | Paebbl <sup>®</sup> |      | Made of Air | Biozeroo             |
|-------------------------------------------|--------|------------------------------|---------------------|------|-------------|----------------------|
| Carbon capture and<br>sequestration       | ~      | ×                            | ~                   | ×    | ~           | ×                    |
| Carbon storage                            | ~      | ×                            | ~                   | ×    | ~           | ×                    |
| Structural building<br>materials          | ~      | ~                            | ×                   | ~    | ×           | ~                    |
| Versatility across<br>applications        | ~      | ✓                            | ×                   | ~    | <b>~</b>    | <ul> <li></li> </ul> |
| Technical<br>performance and<br>strength* | ~      | ~                            | ~                   | ~    | ×           | ~                    |
| Certifications or<br>compliance           | ×      | ~                            | ×                   | ~    | ×           | ×                    |
| Manufacturing cost**                      | Medium | Medium                       | Low                 | High | Low         | Medium               |

# Next Steps (12 months)

#### **Regulatory approval:**

Securing regulatory approvals under British Standards, BBA, BREEAM, and Puro Earth.

#### Market Validation:

Secure customer demand and commitments for our carbonnegative materials.

#### **Product Development:**

Complete development + testing of our pilot product line, including masonry blocks, facing bricks and porous paving slabs.

## **Partnerships:**

- Formalize CO<sub>2</sub> supply and industry collaborators
- Academic partnerships
- Reuse of industrial hubs
- New Scottish jobs!

# Thank You! Any Questions?







