

Bringing academia and industry together

Leveraging AI for Uncertainty Quantification in Subsurface CO2 Leakage Risk Assessment

Sarah Perez¹, Florian Doster², Ahmed ElSheikh² & Andreas Busch¹

- 1. The Lyell Centre, GeoEnergy Group, Heriot-Watt University, UK
- 1. Institute of GeoEnergy Engineering, Heriot-Watt University, UK

ECO-AI project: Enabling CO₂ Capture and Storage using AI

(Grant Ref: EP/Y006143/1)

02/12/2024

Reliability in Subsurface CO2 Storage

Why does it matter ?

- Net-Zero goal by 2050: hundreds of Gt of CO2 captured
- Extensive CCS deployment to meet the IPCC 1.5 °C target
- Storage capacity potential VS Leakage risk assessment

Integrity & Relibability

- Geological Faults & Fracture damaged zones
- Mineral Reactivity & Geochemical concerns

Lack of data Multi-scale Uncertainties

Multi-scale Uncertainties in Leakage Risk

Reliability of subsurface CO2 storage models

- Structural uncertainties
- Subseismic fractures & network distribution
- Hydraulic conductivities ? Empirical Laws

Mineral Precipitation

Acidification, Dissolution

- Model Calibration: mineral reaction rates, kinetic factors
- Geological uncertainties: sub-resolved features, macro-properties?

Bridge the scales

AI-driven Uncertainty Quantification

1. Leverage local interactions

2. Bayesian Inference& Inverse Problems

- 3. Propagate the uncertainties
- Data & Modelling Uncertainties
- Data-driven & Physics-based
- Multi-scale & Multi-objective

Objective 1 Physics-based constraint

SCCS PhD Consortium 2024

AI-driven Uncertainty Quantification

Robust Bayesian Physics-Informed Neural Networks

AI-driven Uncertainty Quantification

Robust Bayesian Physics-Informed Neural Networks

'Adaptive weighting of Bayesian physics informed neural networks or multitask and multiscale forward and inverse problems" Iournal of Computational Physics

SCCS PhD Consortium 2024

Correct model misspecification on hydraulic conductivity

Subvolume 3D domain Ω^{3D} Local Local **Cubic Law** Relative Resolution roughness $256 \times 128 \times 30$

Workflow:

Correct model misspecification on hydraulic conductivity

Bayesian Inference Problem:

Correct model misspecification on hydraulic conductivity

✓ Adaptive correction given mechanical aperture maps

Data-based, Geometric & Local

\checkmark Uncertainties on hydraulic aperture $a_h(x, y)$

Automatically account for roughness

Mean prediction on hydraulic aperture map $a_h(x, y)$

Correct model misspecification on hydraulic conductivity

✓ Uncertainties on fracture permeability

Automatically account for roughness

✓ Infer local permeability field $K_{NN}^{a_h}(x, y)$

Compatible with Stokes and Darcy upscaling

SCCS PhD Consortium 2024

Roughness Effects and Uncertainties on Fracture Permeability

Uncertainty on Mineral Reactivity

Reactive inverse problem at the pore-scale

 $CaCO_3(s) + H^+ \rightarrow Ca^{2+} + HCO_3^-$

C_H+ : Acid concentration

C_{CaCO₃(s)} : Calcite concentration

v : molar volume

ε : micro-porosity field

 $C_{CaCO_3(s)} = (1 - \varepsilon)/v$

✓ Morphological uncertainties on the data Learn from the dynamics ? UQ on initial state

✓ Assimilation of reactive parameters

PDE model, Noisy measurements

Uncertainty on Mineral Reactivity

Reactive inverse problem at the pore-scale

$$\frac{\partial C_{H^+}^*}{\partial t^*} - \mathbf{D}_{\mathbf{m}}^* \nabla \cdot \left(\varepsilon^{1+\eta} \nabla \left(\varepsilon^{-1} C_{H^+}^* \right) \right) + \mathbf{D} \mathbf{a}_{II}^* C_{H^+}^* \mathbb{I}_{\{(1-\varepsilon)>0\}} = 0$$

$$\frac{1}{C_0 \mathbf{v}} \frac{\partial \varepsilon}{\partial t^*} = \mathbf{D} \mathbf{a}_{II}^* C_{H^+}^* \mathbb{I}_{\{(1-\varepsilon)>0\}}$$
+ initial and boundary conditions

Sequential Reinforcement of PDE constraints

1)
$$\varepsilon_{\Theta}$$
 2) ε_{Θ} , C_{Θ} and Da_{II}^{*} **3**) ε_{Θ} , C_{Θ} , Da_{II}^{*} and D_{m}^{*}

Phase Space Trajectory

Marginal Posterior Distributions

Posterior range of physical Damköhler

Uncertainty on Mineral Reactivity

Computational Geosciences

CONCLUSION

Reliability, Robustness & Upscaling

AI-driven uncertainty quantification for reliable leakage risk assessment

- Correct model misspecification
- Model calibration Parameters ?
- Data uncertainties, noise & sparsity
- Learn from models & experiments
- Multi-scale & Multi-objective inference
- Propagation of uncertainties

Bringing academia and industry together

Thank you !

