

Mechanochemical processing of silicate rocks to trap CO₂

Dr Mark Stillings, Prof Becky Lunn, Prof Zoe Shipton Department of Civil and Environmental Engineering, University of Strathclyde, UK

Engineering and Physical Sciences Research Council

The problem

Hard to decarbonize industries emit CO₂ during chemical reactions and/or require very high energy intensity:

- Metal refining
- Chemical manufacturing industry
- Cement production
- Blue hydrogen production
- Asphalt

Civil & Environmental Engineering

Microseismic induced mechanochemical reactions

Microseismic induced mechanochemical reactions

Microseismic induced mechanochemical reactions

Stillings, M., Lunn, R. J., Pytharouli, S., Shipton, Z. K., Kinali, M., Lord, R., & Thompson, S. (2021). Microseismic events cause significant pH drops in groundwater. *Geophysical Research Letters*, 48, e2020GL089885. <u>https://doi.org/10.1029/2020GL089885</u>

Fracture-initiated Mechanochemical Reactions in Silicates

Mechanochemical Reactions in Silicates

The idea

Mechanochemistry uses the energy released from breaking a bond to drive a chemical reaction

The idea

Mechanochemistry uses the energy released from breaking a bond to drive a chemical reaction

Can we use the mechanochemical energy released when we break a siloxane bond to capture CO₂ during rock crushing?

How stable is the trapped CO_2 ? How is the CO_2 trapped?

Ground for Structure and ion dynamics of mechanosynthesized oxides and fluorides. Zeitschrift für Kristallographie -Centre Crystalline Materials, Vol. 232 (Issue 1-3), pp. 107-127. https://doi.org/10.1515/zkri-2016-1963

Civil & Environmental Engineering

during grinding

Laboratory demonstration CO₂ Trapping

Milling rock to 15 μ m grain size in CO₂ at ambient temperature

Granite and basalt selected as *endmember* mafic and felsic rocks

CO₂ trapped in both basalt and granite

Process not reliant on high Ca and Mg in rock?

Whole-rock mineral composition

Basalt

Granite

Laboratory demonstration **CO₂ Trapping**

CO₂-milled rocks

Engineering & Energy Geosciences Civil & Environmental Engineering Ground for Centre

Mineral Trapping

Laboratory demonstration **CO₂ Trapping**

Engineering & Energy Geosciences Civil & Environmental Engineering Ground for Centre

Mineral Trapping

Comparing minerals with whole-rocks

Determining CO₂ leachability

How much of the trapped CO₂ is insoluble?

Engineering & Energy Geosciences Civil & Environmental Engineering Ground for **Centre**

> 96% CO₂ remains trapped in basalt and granite

How much of the trapped CO_2 is insoluble?

CO₂ before leaching

CO₂ after leaching

Ion leaching into solution

Ion leaching into solution

Thermal desorption

Evidence suggests we are not making metal carbonates

thermal desorption experiments

Thermal desorption

Evidence suggests we are not making metal carbonates

Thermal desorption experiments

Ogura, S., Fukutani, K. (2018). Thermal Desorption Spectroscopy. In: The Surface Science Society of Japan (eds) Compendium of Surface and Interface Analysis. Springer, Singapore. https://doi.org/10.1007/978-981-10-6156-1_116

12 Granite **Basalt** Counts per second (×100,000) Counts per second (×100,000) 10 10 CaMg(CO₃)₂ 538 °C MgCO₃ 310 °C CaCO₃ CaMg(CO₃)₂ MgCO₃ CaCO₃ 8 8 844 °Č 310 °C 538 °C 844 °Č 6 6 4 4 2 2 0 0 200 400 600 800 1,000 200 400 600 800 1,000 Temperature (°C) Temperature (°C)

after teaching

air-milled control

Thermal desorption

before leaching

Engineering & Energy Geosciences

Civil & Environmental Engineering

Ground

for

Centre

24

Summary

- Milling Silicate rocks in CO₂ mechanochemically captures the CO₂
- Captured CO₂ is thermally stable up to 300°C and insoluble
- Trapping occurs differently in polymineralic systems compared to monomineralic
- Backed onto current mining processes ~2.8% of global emissions could be captured annually

Ongoing work

- Exploring trapping of other GHGs and realistic CO2 concentrations for effluent gases
- Identifying possible uses for carbonated powders
- Understanding how feedstock variability affects reactions
- Characterization of the trapped CO2