

Bringing academia and industry together

INSIGHTS INTO THE DEVELOPMENT OF GREENER HIERARCHICAL ZEOLITES APPLIED TO THE HYDROCRACKING OF PLASTIC WASTE

M. Usman Azam, Inês Graça, Waheed Afzal

m.azam.20@abdn.ac.uk

School of Engineering

University of Aberdeen, King's College, Aberdeen, AB24 3FX

Connect with me on LinkedIn

04/12/2023

Redefining Waste: Innovative Paths in Recycling

Life Cycle Impact Assessment

Impact category	Unit	Pyrolysis	Hydrocracking
Abiotic depletion	kg Sb eq	1.7×10 ⁻⁴	1.43×10 ⁻⁴
Abiotic depletion (fossil fuels)	MJ	2.99×10^{4}	2.45×10^{4}
Global warming (GWP100a)	kg CO_2 eq	2.56×10^{3}	1.05×10^{3}
Ozone layer depletion (ODP)	kg CFC-11 eq	-4.4×10-4	-2.3×10-4

Azam et al., 2022

Hierarchical Based Zeolites

Different Zeolite Supports

12 Ring Structure

Hydrocracking of Waste Surgical Masks

Impact category	Unit	Incineration	Pyrolysis	Hydrocracking
Abiotic depletion	kg Sb eq	2.65×10 ⁻⁰⁷	-6.4×10 ⁻⁰⁸	-8.4×10 ⁻⁰⁸
Abiotic depletion (fossil fuels)	MJ	71.99	49.83	48.77
Global warming (GWP100a)	kg CO ₂ eq	4.42	0.39	0.17
Ozone layer depletion (ODP)	kg CFC-11 eq	1.65×10 ⁻⁰⁸	-9×10 ⁻⁰⁸	-9.93×10 ⁻⁰⁸
Marine aquatic ecotoxicity	kg 1,4-DB eq	453.41	-1732.38	-1913.49
Terrestrial ecotoxicity	kg 1,4-DB eq	3.69×10-4	-1.72×10 ⁻³	-1.88×10 ⁻³

Azam et al., 2023

A Road Towards Sustainable Catalysis

Sustainable Catalysis

X-Ray Diffraction

Acidic Properties

Physiochemical Properties

Catalyst Name	Relative intensity	Si/Al (ICP)	Si/Al _{IV} (XRD)	FAI	EFAI	PyH ⁺	PyL	<u>РуН⁺350°С</u> РуН ⁺ 150°С	<u>PyL350°C</u> PyL150°C	V _{micro}	V _{meso}	S _{ext}
	%					μmol	g-1	%	%	cm	³ g ⁻¹	m ² g ⁻¹
Z	100	30	31	5.95	0.15	231	42	53	88	0.239	0.248	256
Z-1	93	29	29	6.34	0.07	237	36	47	89	0.272	0.283	297
Z-2	90	28	33	5.69	0.93	174	75	45	46	0.230	0.260	283
Z-3	87	37	39	4.76	0.29	116	47	28	73	0.239	0.282	301
Z-4	92	29	32	5.88	0.52	269	57	44	69	0.245	0.264	287
Ni-Z	96	-	-	-	-	123	263	37	34	0.227	0.224	241
Ni-Z-1	84	-	-	-	-	96	210	36	39	0.252	0.268	297
Ni-Z-2	82	-				137	178	35	29	0.237	0.260	281
Ni-Z-3	72	-	-	-	-	136	115	35	37	0.238	0.277	297
Ni-Z-4	83	-	-	-	-	114	250	34	36	0.222	0.255	286

Hydrocracking of HDPE

Catalyst	Yield (%) (Selectivity (%))					
	Gases	Lighter Oils	Heavier Oils	(%)		
Thermal	19.2 (42.9)	10 (22.3)	15.6 (34.8)	44.8		
Z	22.8 (26.7)	55.3 (65.0)	7.1 (8.3)	86.5		
Z-1	21.2 (23.7)	62.6 (69.9)	5.8 (6.4)	89.6		
Z-2	21.0 (23.3)	63.6 70.6)	5.5 (6.1)	90.1		
Z-3	25.7 (28.1)	61.2 (66.9)	4.7 (5.0)	91.6		
Z-4	25.0 (26.9)	62.7 (67.8)	4.8 (5.2)	92.5		
Ni-Z	28.5 (29.9)	60.9 (63.9)	6.0 (6.3)	95.3		
Ni-Z-1	29.5 (29.8)	65.2 (65.7)	5.0 (5.1)	>99		
Ni-Z-2	31.5 (31.8)	63.3 (63.9)	4.3 (4.4)	>99		
Ni-Z-3	35.9 (36.0)	58.3 (58.6)	5.3 (5.4)	>99		
Ni-Z-4	40.1 (40.1)	56.4 (56.5)	3.3 (3.3)	>99		

Hydrocracking Experiment at 375 °C, 20 bar hydrogen pressure for 60 min residence time

Reaction Kinetics

$$k = A.e^{\frac{E_a}{RT}}$$

-

Sample ID	R ²	E _a	Α	
		(kJ.mol ⁻¹)	(min ⁻¹)	
Ni-Z-1	0.97	88	1.2×10 ⁶	
Ni-Z-2	0.96	81	3.3×10 ⁵	
Ni-Z-3	0.96	75	1.1×10 ⁵	
Ni-Z-4	0.97	74	1.1×10 ⁵	

Post-Consumed Plastics

3 2272LC

Catalyst	Material	Yield (%) (Selectivity (%))			
		Gases	Lighter Oils	Heavier Oils	(%)
Ni-Z-1	Post-consumed HDPE	26.63 (26.91)	64.86 (65.55)	7.46 (7.54)	98.95
	Virgin HDPE	26.14 (26.37)	66.17 (66.77)	6.79 (6.86)	>99
Ni-Z-2	Post-consumed HDPE	28.66 (28.86)	63.73 (64.42)	6.91 (6.95)	>99
	Virgin HDPE	31.16 (31.22)	62.52 (62.65)	6.11 (6.12)	>99
Ni-Z-3	Post-consumed HDPE	30.28 (30.46)	62.89 (63.27)	6.23 (6.27)	>99
	Virgin HDPE	33.34 (33.47)	60.33 (60.57)	5.93 (5.95)	>99
Ni-Z-4	Post-consumed HDPE	33.44 (33.64)	60.17 (60.53)	5.99 (6.03)	99
	Virgin HDPE	36.88 (36.91)	57.60 (57.66)	5.42 (5.43)	>99

Post-Consumed Plastics

Reusability

Catalyst	Material		(%))	Conv. (%)	
		Gases	Lighter Oils	Heavier Oils	
Ni-Z-1	Fresh Run	26.6 (26.9)	64.9 (65.6)	7.4 (7.5)	98.95
	Spent I	24.6 (26.5)	58.2 (62.8)	10.0 (10.8)	92.8
	Spent II	23.9 (27.2)	48.6 (55.2)	15.4 (17.5)	87.89
	Regenerated Run	23.4 (24.6)	60.8 (64.1)	10.7 (11.2)	94.79
Ni-Z-2	Fresh Run	28.7 (28.9)	63.7 (64.4)	6.9 (7.0)	>99
	Spent I	24.4 (25.6)	62.7 (65.7)	8.3 (8.7)	95.38
	Spent II	21.4 (25.2)	47.5 (55.9)	16.0 (18.8)	84.82
	Regenerated Run	21.2 (22.1)	61.6 (64.4)	12.8 (13.4)	95.57
Ni-Z-3	Fresh Run	30.3 (30.5)	62.9 (63.3)	6.2 (6.3)	>99
	Spent I	26.1 (27.2)	62.7 (65.3)	7.2 (7.5)	95.88
	Spent II	23.6 (26.2)	55.8 (61.8)	10.8 (12.0)	90.17
	Regenerated Run	30.2 (31.2)	58.9 (60.9)	7.6 (7.9)	96.67
Ni-Z-4	Fresh Run	33.4 (33.6)	60.2 (60.5)	6.0 (6.0)	>99
	Spent I	23.3 (24.0)	64.0 (65.8)	9.9 (10.2)	97.20
	Spent II	21.9 (23.7)	58.5 (63.2)	12.2 (13.2)	92.65
	Regenerated Run	31.9 (32.6)	59.1 (60.4)	6.8 (7.0)	97.82

Reusability

Cyclic Runs

Sustainable Catalysis: Other Zeolite Based Supports

Conclusion

- Sustainable Catalysis
- Low energy requirements
- High quality gasoline range fuels
- High reusability of spent catalysts
- Provide new direction to industries

References

- Azam, M. U., Vete, A., & Afzal, W. (2022). Process simulation and life cycle assessment of waste plastics: a comparison of pyrolysis and hydrocracking. *Molecules*, *27*(22), 8084.
- Azam, M. U., Fernandes, A., Graça, I., & Afzal, W. (2023). Hydrocracking of surgical face masks over Y Zeolites: Catalyst development, process design and life cycle assessment. *Fuel*, *349*, 128704.

Acknowledgement

The authors acknowledge Professor Filipa Ribeiro (Instituto Superior Tecnico, Portugal), Dr Auguste

Fernandes (Instituto Superior Tecnico, Portugal), and Dr Alan McCue (University of Aberdeen, UK) for

providing technical support during catalyst characterizations and LEVERHULME TRUST for providing financial support.

LEVERHULME TRUST_____

Bringing academia and industry together

Thank you

