PATHWAYS TO PRODUCE **RENEWABLE CHEMICALS** FROM AMBIENT CO2 **THE CASE OF ETHYLENE**

ISABELLA QUARANTA

PhD Researcher i.c.cavalcante-quaranta@sms.ed.ac.uk

Direct Air Capture

Employed in different of locations

> ✓ Net-Zero Negative Emissions

K Large energy consumption

🛞 High removal cost

THERMO*Model*

Developed by:

Isabella Christina Cavalcante Quaranta (i.c.cavalcante-quaranta@sms.ed.ac.uk) Giulio Santori (g.santori@ed.ac.uk)

This file is confidential and is shared among SoIDAC project members only for the purpose of the project only.

Quick Evaluation		
Environmental Analysis	0	Run
Economic Analysis	0	nun
Power from FSS : Required to PEC	0	
Thermal Power FSS : Required DAC	0	Clear Results
Electrical Power FSS : Fan motion in DAC	0	

RESULTS SUMMARY			
PEC			
Electrochemical Reaction			
Ethylene production	3.65 kg/year		
Ethanol production	0.75 kg/year		
Hydrogen production	0.39 kg/year		
Total Power Required			
To process 0.01 kg/day of Ethylene	13.13 W		
Energy generation or excess in PEC			
Heat Power	9.23 W		

PEC	value units	Observations:
Ethylene Production (single unit)	0.01 kg/day	Total target: 1 kg/day
Electrode area	5 cm ²	
Cell current density	250 mA/cm ²	
Cell potential	3.5 V	
CO ₂ Excess factor for PEC inlet	0.3	Excess factor of CO2 demand for the electroch
		no excess. 1 means a 100% of excess.
Ethanol Faradaic Efficency	10 %	
Ethylene Faradaic Efficiency	80 %	Target: 70%; Current state-of-the-art: 40-60%
Cell equilibrium potential (Ethylene)	1.3 V	Aproximation based on Nernst equation
Cell Arrangement	Parallel	Needs to be either Parallel or Series

DAC	units	Observations:
CO2 atmospheric mass concentration	410 ppm	
Relative humidity	1 %	
Process recovery to product stream	0.8	
Required purity of CO2 product	0.95	
Contactor pressure drop	0.01 kPa	Due to the size of the contactor, we expect no n
Fan efficiency	0.4	
Process efficiency	0.1	
Ambient Temperature	25 °C	
Hot water temperature	60 °C	Target: 60 °C; Current state-of-the-art: 80 °C
Primary thermal energy intensity (no fans)	3 kJ/g	Target: 3 kJ/g; Current state-of-the-art: 8.51 kJ/
DAC Outlet Excess factor (Pure CO2 for storage)	0.1	Excess production of DAC outlet used for geolo product flowrate. Enter zero for no excess. Enter

SS	value units	Observations:
olar radiation	0.4 kW/m ²	Between 0.2 - 1kW/m ² , average value in Southe
Cold light fraction - electricity	0.7	Wave lenghts of 400-1100 nm
JV/IR fraction - heat	0.3	Wave lenghts of 1100-2500 nm and below 400
ield area	0.6 m ²	0
resnel Optical Efficiency	0.55	
hermal efficiency	0.53	Minimum: 0.35; Maximum: 0.7
Photovoltaic fraction	0.7	
Photovoltaic conversion efficiency	0.22	Light to electricity conversion efficiency (Theor
Radiation time	7.25 h	
xtra Operation time from renewable energy excess	1 h	

DAC and PED operation	value	units	Observations:
Working hours	8	h/day	If this value is higher than the radiation time,
Working days	365	day/year	

DEFINE PROJECT SCALE

COMPONENT DESIGN

ADSORBENT SELECTION

Equilibrium measurements

Gravimetric apparatus (DVS, ASAP 2020) Volumetric apparatus (Autosorb) Chromatograph apparatus (ZLC)

Kinetic measurements

Volumetric apparatus Chromatograph apparatus (ZLC)

Pictures and results were kindly provided by Zhenye Xu

Materials were kindly provided by Prof. Paul Wright and Dr Harpreet Kaur from University of St Andrews

ADSORBENT SELECTION

Materials	Capacity	Kinetics	Application
Na-Y	Small	Very fast	Compression
CALF-20	Small	Very fast	Concentration/ Compression
func-Y	Large	Fast	Removal area
IRMOF-74	Large	Slow	Compression

Can it be coated on the monolith?

Pictures and results were kindly provided by Zhenye Xu

Materials were kindly provided by Prof. Paul Wright and Dr Harpreet Kaur in University of St Andrews

MONOLITH COATING

Bare

MONOLITH COATING

CO₂ REMOVAL: METAL SUPPORT COATING 7 layers 9 layers 2 4 Weight Weight Pre-Immersion Air Furnace Extra treatment Blank knifing dry Coated drying Sample Sample ŝŝ ŝ ŝŝĵ **Pictures kindly provided by Man Zhang** _____

Pathways to Produce Renewable Chemicals From Ambient CO2 (i.c.cavalcante-quaranta@sms.ed.ac.uk)

SHANGHAI JIAO TONG

UNIVERSITY

CO₂ REMOVAL: MODELLING

- Feed limit composition
- Adsorbent amount
- Desorption temperature
- Cycle scheduling
- Adsorption beds integration
- Prototype design

MODELLING

- Feed limit composition
- Adsorbent amount
- Desorption temperature
- Cycle scheduling
- Adsorption beds integration
- Prototype design

HEAT MANAGEMENT

Thermal Wave Method

Experimental results were kindly provided by Marwan Mohammed

Ethylene Conversion Electrodeposition

of Cu catalysts

Results kindly provided by Mayra Tovar THE UNIVERSITY

30 mA cm⁻²

30 mA cm⁻² - 2C

Faradaic Efficiency

ISABELLA QUARANTA

PhD Researcher The University of Edinburgh i.c.cavalcante-quaranta@sms.ed.ac.uk

THE SECOND SECON

This project has received funding from UK Research and Innovation - Innovate UK under Innovation Funding Service (ISF) 10039331 – Full spectrum solar direct air capture and conversion: https://soldac-project.eu/