CO2 network operation challenges

Introduction - Network operation

- A large number of CCS injection sites are being developed. Often linked via a common transport network. For example, at the Dutch North Sea, Porthos is being build and Aramis is the development phase.
- Network transport and injection issues special for CCS
 - Corrosion/safety (impurities)
 - Temperature (low cycle fatigue, hydrate, fault activation, equipment)
 - Depressurisation
 - Network control/operations
- Network operations:
 - Steady state:
 - Can the stores be filled over time?
 - What network operating conditions are required?
 - Dynamic operations
 - How can the flow be controlled to the different Hubs (as per contract store emitter). Especially in case of different Hub owners.
 - What is the required control/operating conditions to be to handle upsets such as drop in emitter flow or sudden stop of a well?

https://www.aramis-ccs.com

Introduction - Network operation

- Particularities of CO2 transport network:
 - Network can link stores with very different characteristics
 - Depleted gas/oil fields with high injectivity wells
 - Depleted gas/oil fields with low injectivity wells
 - Aquifers
 - For depleted fields, the boundary conditions vary much over time due to reservoir pressure increase
 - Networks can exists of Hubs with different owners with their own economic contracts
 - Main operational mode is in liquid/dense phase
 - Low buffer capacity and fast response to dynamic events

Influence well characteristic

- Well injection limitations are governed by:
 - Downhole pressure/pressure drop (reservoir pressure drop)
 - Erosion/vibration
 - Downhole temperature (hydrate prevention, fault activation)
 - Wellhead temperature (SSSV, freezing annulus fluids, ..)
- For most wells, this means that the operational range has a minimum and maximum flow
- In most cases, the operational range is limited by the wellhead temperature due to the occurrence of two-phase conditions at low wellhead pressure

Influence well characteristic

- The operational range is very sensitive to
 - Manifold temperature
 - Reservoir injectivity
- Ways to extend operational envelope
 - Injection in gas phase (at the cost of injection rate)
 - Increase manifold temperature (insulated pipelines, heating)
 - Design well completion (tubing) such that wellhead pressure is high enough (at the cost of injection at higher reservoir pressures)
 - Downhole chokes (at the cost of very high pressure drop downhole)

TNO innovation for life

 $\dot{m} = \mathrm{PI} \cdot \Delta p$

Influence well characteristic

- Wells in the network can therefore be divided into two characteristics
- Wells with two-phase operation
 - Low temperature are avoided by high manifold temperatures
 - Wells have minimum/maximum flow rate but have a relative large operating range
- Wells with single-phase operation
 - The well is essentially in friction control (or high pressure drop across choke)
 - Wells have a limited operating envelope
 - Too low flow leads to fall-off frictional pressure drop and lead to low temperatures
 - Too high flow leads to high required manifold pressures

Steady state control

- Control options/requirements
- Inlet flow control
 - Via compressor/pump
- Flow control at Hub and well level
 - Issues are measurement uncertainties, dynamic event
 Due to this, 'free' wells are advised
- Pressure control
 - A minimum pressure is usually set to avoid two-phase conditions
 - The actual operating pressure can be potentially let free
 - In case the wells are in friction control and operate as desired, the network operating pressure will balance. But poses risks in case of upsets and if Δp in wells/reservoir is not as expected

7

Steady state control

- The minimum operating pressure in the network can be determined by a single a single low injectivity Hub/well.
- Disadvantages
 - High network pressure might be disadvantages for other wells (higher pressure drop can lead to lower temperatures for high injectivity wells)
 - Increasing the overall network pressure for only a single well/hub is an economic cost for all (local pump might be beneficial
- Surprising by-effect
- If there are hubs with spare allocation and hubs who are at the maximum flow, the flow distribution might still end up skewed
- Control needs to be done on hub with spare capacity

If mean operating pressure is set higher than required the flow control can be optimized

	Flow to Hub 3	Flow to Hub 4
Desired rate to Hub3 and Hub4	120	120
Flow control to Hub3	110 (valve to Hub-3 full open)	130
Flow control to Hub 4	120	120

o innovation for life

Dynamic operation

- Higher operating pressure and pressure control is also better in case of dynamic upsets
- Dynamics have large consequence
 - Friction wells
 - Liquid/dense operations
 - Influence temperature
- Slow dynamics depending on emitter type
 - Day day cycles
 - Seasonal cycles
- Critical dynamic events
 - Sudden stop/increase in emitter flow
 - Sudden stop of well injection
- For wells and reservoir # well closures needs to be limited

9

Dynamic operation

- Example
- Hubs
- Hub1:
- Hub2:
- 3 wells Pres = 150 bar 3* 1.2 Mta 1 well Pres = 100 bar 1* 0.95 Mta
- Pipeline: total length 100 km, 20" (buried)
 - Minimum pipeline pressure control at the Hubs (either 120 or 150 bar)
 - Flow control to Hub-2 (Hub-1 takes remainder)
 - At hub-1, two wells at flow control, one well 'free'
- At 120 bar, all the wells are at 'maximum' flow at these conditions. That means at the wells the well chokes are full open.
- The mass flow rate at the compressor is changed with
 - +- 20 %
 - Period for 1 hours (short term, unplanned upset)

Dynamic operation

- Plotted results
 - Pipeline inlet pressure compared to steady state
 - Temperature of uncontrolled well at Hub-1. At hub-2 the flow control helps in stabilizing the well flow
- At the change in inlet mass flow rate:
 - Very sharp decrease/increase in pipeline pressure (several bars in a few minutes)
 - At 150 bar minimum pressure, the pressure swing is less than at 120 bar.
 - Sharp changes in wellhead temperatures due to reduced flow
- Pressure stabilization relatively fast after upset (~2 hours)
- Full temperature stabilization ~ 20 hours. So in practice the network is always in dynamic state

Conclusions

- CCS network operations can be complex even for simple networks:
 - Different well types impose different boundary conditions
 - For extended networks, flow control to Hubs will be required
 - However due to dynamics and measurement uncertainty, some hubs/wells will need to take flexibility
 - A common 'arche' type is that the wells are at full liquid operation
 - Limited operational range and strong influence required injection pressure on flow rate
 - This makes the network operating pressure sensitive to small changes in flow rate
 - At steady state, a limited number of low injectivity hubs/wells can dominate the required operating pressure and also therefore the response to flow dynamics
 - The time and length scales of the network are
 - Short with respect to pressure (low buffer capacity)
 - Very long with respect to temperature and therefore mass flow rates
 - Networks will be in continuous dynamics due the dynamics at emitters/stores
- A higher network pressure does allow for better distribution and control but comes at economic cost
- Collaboration between Hubs can lead to lower pressure requirements and network stabilisation

12

Acknowledgments

This work was done as part of the NCC program Task 11

